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Abstract
We establish deep and remarkable connections among partial differential
equations (PDEs) integrable by different methods: the inverse spectral
transform method, the method of characteristics and the Hopf–Cole
transformation. More concretely, (1) we show that the integrability
properties (Lax pair, infinitely-many commuting symmetries, large classes
of analytic solutions) of (2+1)-dimensional PDEs integrable by the inverse
scattering transform method (S-integrable) can be generated by the integrability
properties of the (1+1)-dimensional matrix Bürgers hierarchy, integrable by
the matrix Hopf–Cole transformation (C-integrable). (2) We show that the
integrability properties (i) of S-integrable PDEs in (1+1) dimensions, (ii) of
the multidimensional generalizations of the GL(M, C) self-dual Yang–Mills
equations and (iii) of the multidimensional Calogero equations can be generated
by the integrability properties of a recently introduced multidimensional matrix
equation solvable by the method of characteristics. To establish the above
links, we consider a block Frobenius matrix reduction of the relevant matrix
fields, leading to integrable chains of matrix equations for the blocks of such a
Frobenius matrix, followed by a systematic elimination procedure of some of
these blocks. The construction of large classes of solutions of the soliton
equations from solutions of the matrix Bürgers hierarchy turns out to be
intimately related to the construction of solutions in Sato theory. (3) Finally, we
show that suitable generalizations of the block Frobenius matrix reduction of

1751-8113/08/185209+28$30.00 © 2008 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/41/18/185209
mailto:zenchuk@itp.ac.ru
mailto:paolo.santini@roma1.infn.it
http://stacks.iop.org/ JPhysA/41/185209


J. Phys. A: Math. Theor. 41 (2008) 185209 A I Zenchuk and P M Santini

the matrix Bürgers hierarchy generates PDEs exhibiting integrability properties
in common with both S- and C-integrable equations.

PACS numbers: 02.30.Ik, 02.30.Jr
Mathematics Subject Classification: 37K10, 35P25

1. Introduction

Integrable nonlinear partial differential equations (PDEs) can be grouped into different classes,
depending on their method of solution. We distinguish the following three basic classes.

(1) Equations solvable by the method of characteristics [1], hereafter called, for the sake of
brevity, Ch-integrable, such as the following matrix PDE in arbitrary dimensions [2]:

wt +
N∑

i=1

wxi
ρ(i)(w) + [B,w]σ(w) = 0, (1)

where w is a square matrix and ρ(i)(·), σ (·) are scalar functions representable as positive
power series, or such as the vector equations solvable by the generalized hodograph
method [3–8].

(2) Equations integrable by a simple change of variables, often called C-integrable [9], such
as the matrix Bürgers equation [10]

wt − Bwxx − 2Bwxw + [w,B](wx + w2) = 0, (2)

where B is any constant square matrix, linearizable by the matrix version of the Hopf–Cole
transformation �x = w� [11].

(3) Equations integrable by less elementary methods of spectral nature, the inverse spectral
transform (IST) [12–16] and the dressing method [16–20], often called S-integrable [9] or
soliton equations. Within this class of equations, we distinguish four different subclasses,
depending on the nature of the associated spectral theory.

(a) Soliton equations in (1+1) dimensions such as, for instance, the Korteweg–de Vries
(KdV) [12, 21] and the nonlinear Schrödinger (NLS) [22] equations, whose inverse
problems are local Riemann–Hilbert (RH) problems [13, 15].

(b) Their (2+1)-dimensional generalizations, such as the Kadomtsev–Petviashvily (KP)
[23] and Davey–Stewartson (DS) [24] equations, whose inverse problems are nonlocal
RH [25, 26] or ∂̄-problems [27].

(c) The self-dual Yang–Mills (SDYM) equation [28, 29] and its generalizations in
arbitrary dimensions.

(d) Multidimensional PDEs associated with one-parameter families of commuting vector
fields, whose novel IST, recently constructed in [30, 31], is characterized by nonlinear
RH [30, 31] or ∂̄ [32] problems. Distinguished examples are the dispersion-less KP
equation, the heavenly equation of Plebanski [33] and the following integrable system
of PDEs in (N + 4) dimensions [30]:

�vt1z2 − �vt2z1 +
N∑

i=1

(�vz1 · ∇�x
)�vz2 −

N∑
i=1

�vz2 · ∇�x�vz1 = �0, (3)

where �v is an N-dimensional vector and ∇�x = (
∂x1 , . . . , ∂xN

)
.
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Each one of the above methods of solution allows one to solve a particular class of PDEs
and is not applicable to other classes.

Recently, several variants of the classical dressing method have been suggested, allowing
to unify the integration algorithms for C- and S-integrable PDEs [34], for C- and Ch-integrable
PDEs [35], and for S- and Ch-integrable PDEs [36]. In particular, the relation between the
matrix PDE (1), integrable by the method of characteristics, and the GL(M, C) SDYM
equation has been recently established in [37]. As a consequence of this result, it was shown
that the SDYM equation admits an infinite class of lower-dimensional reductions which are
integrable by the method of characteristics.

In this paper, we extend the results of [37], showing the existence of remarkably deep
relations among S-, C- and Ch-integrable systems. More precisely, we do the following.

(1) We show (in section 2) that the integrability properties (Lax pair, infinitely-many
commuting symmetries, large classes of analytic solutions) of the C-integrable (1+1)-
dimensional matrix Bürgers hierarchy can be used to generate the integrability properties
of S-integrable PDEs in (2+1) dimensions, such as the N-wave, KP and DS equations;
this result is achieved using a block Frobenius matrix reduction of the relevant matrix
field of the matrix Bürgers hierarchy, leading to integrable chains of matrix equations for
the blocks of such a Frobenius matrix, followed by a systematic elimination procedure
of some of these blocks. The construction of large classes of solutions of the soliton
equations from solutions of the matrix Bürgers hierarchy turns out to be intimately related
to the construction of solutions in Sato theory [38–41]. On the way back, starting
with the Lax pair eigenfunctions of the derived S-integrable systems, we show that
the coefficients of their asymptotic expansions, for large values of the spectral parameter,
coincide with the elements of the above integrable chains, obtaining an interesting spectral
meaning of such chains. It follows that, compiling these coefficients into the Frobenius
matrix, one constructs the C-integrable matrix Bürgers hierarchy and its solutions from
the eigenfunctions of the S-integrable systems.

(2) We show (in section 3) that the integrability properties of the multidimensional matrix
equation (1), solvable by the method of characteristics, can be used to generate the
integrability properties of

(a) S-integrable PDEs in (1+1) dimensions, such as the N-wave, KdV, modified KdV
(mKdV) and NLS equations (in section 3.2);

(b) S-integrable multidimensional generalizations of the GL(M, C) SDYM equations (in
section 3.3); this derivation from the simpler and basic matrix equation (1), allows
one to uncover for free two important properties of such equations: a convenient
parametrization, given in terms of the blocks of the Frobenius matrix, allowing one
to reduce the number of equations by half, and the existence of a large class of
solutions describing the gradient catastrophe of multidimensional waves.

(c) S-integrable multidimensional Calogero equations [42–46] (in section 3.4).

As before, these results are obtained considering a block Frobenius matrix reduction,
leading to integrable chains, followed by a systematic elimination procedure of some of
their elements. Vice versa, such chains are satisfied by the coefficients of the asymptotic
expansion, for large values of the spectral parameter, of the eigenfunctions of the soliton
equations.

(3) We show (in section 4) that a proper generalization of the block Frobenius matrix reduction
of the matrix Bürgers hierarchy can be used to construct the integrability properties of
nonlinear PDEs exhibiting properties in common with both S- and C-integrable equations.

Figure 1 shows the diagram summarizing the connections discussed in sections 2 and 3.
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Figure 1. The remarkable relations among PDEs integrable by the inverse spectral transform
method, by the method of characteristics and by the Hopf–Cole transformation.

We end this introduction mentioning previous work related to our main findings as
follows. (i) The matrix Bürgers equation (2) with B = I , together with the block Frobenius
matrix reduction (13), have been used in [47] to construct some explicit solutions of the
linear Schrödinger and diffusion equations. (ii) As already mentioned, once the connections
illustrated in section 2 are exploited to construct large classes of solutions of soliton equations
from simpler solutions of the matrix Bürgers hierarchy, the corresponding formalism turns
out to be intimately related to the construction of solutions of soliton equations in Sato
theory.

2. Relation between C- and S-integrability

Usually C- and S-integrable systems are considered as completely integrable systems with
different integrability features. In this section we show the remarkable relations between
them.

2.1. C-integrable PDEs

It is well known that the hierarchy of C-integrable systems associated with the matrix Hopf–
Cole transformation

�x = w� (4)

4



J. Phys. A: Math. Theor. 41 (2008) 185209 A I Zenchuk and P M Santini

can be generated by the compatibility condition between equation (4) and the following
hierarchies of linear commuting flows (the hierarchy generated by higher x-derivatives and its
replicas):

�tnm
= B(nm)∂n

x �, n,m ∈ N+, (5)

where � and w are square matrix functions and B(nm), n,m ∈ N+ are constant commuting
square matrices. The integrability conditions yield the following hierarchy of C-integrable
equations and its replicas:

wtnm
+ [w,B(nm)W(n)] − B(nm)W(n)

x = 0, (6)

where
W(n) = W(n−1)

x + W(n−1)w, n ∈ N+,

W(0) = I, W(1) = w, W(2) = wx + w2, W(3) = wxx + 2wxw + wwx + w3, . . .
(7)

and I is the identity matrix.
The first three examples, together with their commuting replicas, read:

(1) n = 1: a C-integrable N-wave equation in (1+1) dimensions

wt1m
− B(1m)wx + [w,B(1m)]w = 0; (8)

(2) n = 2: the matrix Bürgers equation

wt2m
− B(2m)wxx − 2B(2m)wxw + [w,B(2m)](wx + w2) = 0; (9)

(3) n = 3: the third-order matrix Bürgers equation

wt3m
− B(3m)wxxx − 3B(3m)wxxw + [w,B(3m)](wxx + wwx + 2wxw + w3)

− 3B(3m)wx(wx + w2) = 0. (10)

The way of generating solutions of the C-integrable PDEs (6) is elementary: take the
general solution of equations (5):

�(�x) =
∫

�

eIkx+
∑

j,m�1 B(jm)tjmkj

�̂(k) d�(k), (11)

where � is an arbitrary contour in the complex k-plane, �(k) is an arbitrary measure and �̂(k)

is an arbitrary matrix function of the spectral parameter k and �x is the vector of all independent
variables: �x = {x, tnm; n,m ∈ N+}. Then

w = �x�
−1 (12)

solves (6).

2.2. Block Frobenius matrix structure, integrable chains and S-integrable PDEs

It turns out that the C-integrable hierarchy of (1+1)-dimensional PDEs (6), including the N-
wave, Bürgers and third-order Bürgers equations (8)–(10) as distinguished examples, generates
a corresponding hierarchy of S-integrable (2+1)-dimensional PDEs, including the celebrated
N-wave, DS and KP equations respectively. This is possible, due to the remarkable fact that
equations (4) and (5) are compatible with the following block Frobenius matrix structure of
the matrix function w:

w =

⎡
⎢⎢⎢⎣

w(1) w(2) w(3) · · ·
IM 0M 0M · · ·
0M IM 0M · · ·
...

. . .
. . .

. . .

⎤
⎥⎥⎥⎦ , (13)
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where IM and 0M are the M × M identity and zero matrices, M ∈ N+, and w(j), j ∈ N+ are
M × M matrix functions. This block structure of w is consistent with equations (4) and (5)
(and therefore with the whole C-integrable hierarchy (6)) iff matrix � is a block Wronskian
matrix:

� =

⎡
⎢⎢⎢⎢⎣

�(11) �(12) �(13) · · ·
∂−1
x �(11) ∂−1

x �(12) ∂−1
x �(13) · · ·

∂−2
x �(11) ∂−2

x �(12) ∂−2
x �(13) · · ·

...
...

...
. . .

⎤
⎥⎥⎥⎥⎦ , (14)

and

B(im) = diag(B̃(im), B̃(im), · · ·), (15)

where the blocks �(ij), i, j ∈ N+ are M × M matrices, and B̃(im), i ∈ N+ are constant
commuting M × M matrices. In equations (13)–(15), the matrices w,� and B(im) are chosen
to be ∞ × ∞ square matrices containing an infinite number of finite blocks; only in dealing
with the construction of explicit solutions, it is convenient to consider a finite number of
blocks.

Substituting expressions (13) and (15) into the nonlinear PDEs (8)–(10), one obtains the
following (by construction) integrable infinite chains of PDEs, for n,m ∈ N+:

w
(n)
t1m

− B̃(1m)w(n)
x + [w(n+1), B̃(1m)] + [w(1), B̃(1m)]w(n) = 0, (16)

w
(n)
t2m

− B̃(2m)w(n)
xx − 2B̃(2m)w(n+1)

x − 2B̃(2m)w(1)
x w(n) + [w(1), B̃(2m)]

× (
w(1)w(n) + w(n)

x + w(n+1)
)

+ [w(2), B̃(2m)]w(n) + [w(n+2), B̃(2m)] = 0, (17)

w
(n)
t3m

− B̃(3m)
(
w(n)

xxx + 3
(
w(1)

xx w(n) + w(n+1)
xx

)
+ 3w(1)

x

(
w(1)w(n) + w(n+1) + w(n)

x

)
+ 3w(2)

x w(n) + 3w(n+2)
x

)
+ [w(1), B̃(3m)]

(
w(n)

xx + 2
(
w(1)

x w(n) + w(n+1)
x

)
+ w(1)

(
w(n)

x + w(1)w(n) + w(n+1)
)

+ w(2)w(n) + w(n+2)
)

+ [w(2), B̃(3m)]

× (
w(n)

x + w(1)w(n) + w(n+1)
)

+ [w(3), B̃(3m)]w(n) + [w(n+3), B̃(3m)] = 0. (18)

From these chains, whose spectral nature will be unveiled in section 2.4, one constructs,
through a systematic elimination of some of the blocks w(j), the target S-integrable PDEs.
Here we consider the following basic examples.

(2+1)-dimensional N-wave equation. Fixing n = 1 in equation (16), and choosing m = 1, 2,
one obtains the following complete system of equations for w(i), i = 1, 2:

w
(1)
t1m

− B̃(1m)w(1)
x + [w(1), B̃(1m)]w(1) + [w(2), B̃(1m)] = 0, m = 1, 2. (19)

Eliminating w(2) from equations (19) one obtains the classical (2+1)-dimensional S-integrable
N-wave equation:[
w

(1)
t11

, B̃(12)
] − [

w
(1)
t12

, B̃(11)
] − B̃(11)w(1)

x B̃(12) + B̃(12)w(1)
x B̃(11)

+ [[w(1), B̃(11)], [w(1), B̃(12)]] = 0. (20)

DS-type equation. Choosing n = 1, 2 in equations (16), n = 1 in equation (17), m = 1 in
both equations, and simplifying the notation as follows:

tj = tj1, B̃(j) = B̃(j1), j ∈ N+, (21)

one obtains the following complete system of equations for w(i), i = 1, 2, 3:

6
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w
(1)
t1 − B̃(1)w(1)

x + [w(2), B̃(1)] + [w(1), B̃(1)]w(1) = 0, (22)

w
(2)
t1 − B̃(1)w(2)

x + [w(3), B̃(1)] + [w(1), B̃(1)]w(2) = 0, (23)

w
(1)
t2 − B̃(2)w(1)

xx − 2B̃(2)w(2)
x − 2B̃(2)w(1)

x w(1) + [w(1), B̃(2)]
(
w(1)w(1) + w(1)

x + w(2)
)

+ [w(2), B̃(2)]w(1) + [w(3), B̃(2)] = 0. (24)

Using equations (22) and (23), one can eliminate w(3) and w(2) from equation (24). In the case
B̃(2) = αB̃(1) (α is a scalar), this results in the following equation for w(1):[
w

(1)
t2 , B̃(1)

]
+ α

(
w

(1)
t1t1 − B̃(1)w(1)

xx B̃(1) +
[
[w(1), B̃(1)], w(1)

t1

]
+ B(1)wx[B(1), w] − [B(1), w]wxB

(1)
) = 0. (25)

In the simplest case of square matrices (M = 2), with B̃(1) = β diag(1,−1) (β is a scalar
constant), this equation reduces to the DS system:

β̃qt2 − 1

2

(
qxx +

1

β2
qt1t1

)
− 2(ϕq + 2rq2) = 0,

−β̃rt2 − 1

2

(
rxx +

1

β2
rt1t1

)
− 2(ϕr + 2qr2) = 0, (26)

ϕxx − 1

β2
ϕt1t1 + 4(rq)xx = 0,

where

q = w
(1)
12 , r = w

(1)
21 , ϕ = (

w
(1)
11 + w

(1)
22

)
x
, β̃ = 1

αβ
. (27)

If β̃ = i, this system admits the reduction r = q̄:

iqt2 − 1

2

(
qxx +

1

β2
qt1t1

)
− 2(ϕq + 2q̄q2) = 0,

ϕxx − 1

β2
ϕt1t1 + 4(q̄q)xx = 0,

(28)

becoming DS-I and DS-II if β2 = −1 and β2 = 1 respectively.

KP. To derive the celebrated KP equation, choose M = 1, take equations (17) with n = 1, 2,
and equation (18) with n = 1, B̃(2) = β, B̃(3) = −1, where β is a scalar parameter, obtaining

w
(1)
t2 − β

(
w(1)

xx + 2w(1)w(1)
x + 2w(2)

x

) = 0,

w
(2)
t2 − β

(
w(2)

xx + 2w(2)w(1)
x + 2w(3)

x

) = 0,
(29)

w
(1)
t3 + w(1)

xxx + 3
(
(w(1))2w(1)

x +
(
w(1)

x

)2
+ w(1)w(1)

xx

)
+ 3

(
w(2)

xx + w(2)w(1)
x + w(1)w(2)

x

)
+ 3w(3)

x = 0,

where we have set m = 1 and used again notations (21).
After eliminating w(2) and w(3), one obtains the scalar potential KP for u = w(1), y = t2,

t = t3: (
ut +

1

4
uxxx +

3

2
u2

x

)
x

+
3

4β2
uyy = 0. (30)

KP-I and KP-II correspond to β2 = −1 and β2 = 1 respectively.

7
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2.3. Lax pairs for the S-integrable systems

Also the Lax pairs for the S-integrable systems derived in section 2.2 can be constructed in a
similar way, from system (4), (5). We first observe that, due to equation (4), equations (5) can
be rewritten as

�tnm
= B(nm)W(n)�. (31)

Due to the block Frobenius structure of w, it is convenient to work with the duals of
equations (4) and (31):

�̃x = −�̃w, (32)

�̃tnm
= −�̃B(nm)W(n). (33)

Substituting (13) and (15) into equations (32) and (33), one obtains a system of linear chains
for the blocks of matrix �̃. The first few equations involving the blocks of the first row read:

�̃(1n)
x + �̃(11)w(n) + �̃(1(n+1)) = 0, (34)

�̃
(1n)
t1m

+ �̃(11)B̃(1m)w(n) + �̃(1(n+1))B̃(1m) = 0, (35)

�̃
(1n)
t2m

+ �̃(11)B̃(2m)
(
w(n)

x + w(1)w(n) + w(n+1)
)

+ �̃(12)B̃(2m)w(n) + �̃(1(n+2))B̃(2m) = 0, (36)

�̃
(1n)
t3m

+
(
�̃(11)B̃(3m)

(
w(n)

xx + 2
(
w(1)

x w(n) + w(n+1)
x

)
+ w(1)

(
w(n)

x + w(1)w(n) + w(n+1)
)

+ w(2)w(n) + w(n+2)
)

+ �̃(12)B̃(3m)
(
w(n)

x + w(1)w(n) + w(n+1)
)

+ �̃(13)B̃(3m)w(n) + �̃(1(n+3))B̃(3m) = 0, (37)

where n ∈ N+ and �̃(ij) is the (i, j)-block of matrix �̃.

Lax pair for the N-wave equation. Setting n = 1 into equations (34), (35) and eliminating
�̃(12) one obtains (the dual of) the Lax pair for the N-wave equation (20):

ψ̃ t1m
− ψ̃xB̃

(1m) + ψ̃[B̃(1m), w(1)] = 0, m = 1, 2, (38)

where ψ̃ = �̃(11). The dual of it is the well-known Lax pair of the N-wave equation (20):

ψt1m
− B̃(1m)ψx − [B̃(1m), w(1)]ψ = 0, m = 1, 2. (39)

Of course, the compatibility condition of equations (38) and/or equations (39) yields the
nonlinear system (20).

Lax pair for DS. In this paragraph we set m = 1 in the integrable chains, and use notation
(21). The first equation of the dual of the Lax pair is equation (38) with m = 1. To derive the
second equation, we set m = n = 1 into equation (36), and eliminate the fields �̃(12), �̃(13),
using equation (34) with n = 1, 2. In this way, one obtains the dual of the Lax pair for DS-type
equations:

ψ̃ t1
− ψ̃xB̃

(1) + ψ̃[B̃(1), w(1)] = 0, (40a)

ψ̃ t2
+ ψ̃xxB̃

(2) + ψ̃x[w(1), B̃(2)] + ψ̃ s̃ = 0, (40b)

s̃ = [B̃(2), w(2)] + w(1)
x B̃(2) + B̃(2)w(1)

x + [B̃(2), w(1)]w(1). (40c)

Therefore the Lax pair reads:

ψt1 − B̃(1)ψx − [B̃(1), w(1)]ψ = 0, (41a)

8
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ψt2 − B̃(2)ψxx + [w(1), B̃(2)]ψx − s(y)ψ = 0, (41b)

s = [B̃(2), w(2)] + 2B̃(2)w(1)
x + [B̃(2), w(1)]w(1). (41c)

The compatibility conditions of equations (40) or (41) yield a nonlinear system equivalent to
system (22)–(24).

Lax pair for KP. In this paragraph we use notations (21) as well. The first equations of the
dual of the Lax pair for KP are the scalar versions of equations (40b) and (41b) respectively,
with B̃(2) = β and B̃(3) = −1. To write the second equation of the Lax pair for KP, we must
take the scalar version of equation (37) with m = n = 1, and eliminate �̃(1i), i = 2, 3, 4 using
equations (36) for n = 1, 2. As a result, the dual of the Lax pair reads

1

β
ψ̃t2 + ψ̃xx + 2ψ̃ux = 0,

ψ̃ t3 + ψ̃xxx + 3ψ̃xux − 3

2
ψ̃

(
ut2

β
− uxx

)
= 0,

(42)

and the Lax pair is

1

β
ψt2 − ψxx − 2uxψ = 0,

ψt3 + ψxxx + 3uxψx +
3

2

(
ut2

β
+ uxx

)
ψ = 0.

(43)

2.4. From the Lax pairs of S-integrable PDEs to C-integrable PDEs

As usual in the IST for (2+1)-dimensional soliton equations, one introduces the spectral
parameter λ into the Lax pairs (39), (41) and (43) as follows:

ψ(λ; �x) = χ(λ; �x) eλxI+
∑

i,m�1 B̃(im)timλi

, (44)

obtaining, respectively, the following spectral systems for the new eigenfunction χ :

χt1m
− B̃(1m)χx − λ[B̃(1m), χ ] − [B̃(1m)w(1)]χ = 0, (45)

χt1 − B̃(1)χx − λ[B̃(1), χ ] − [B̃(1)w(1)]χ, (46)

χt2 − B̃(2)χxx + λ2[χ, B̃(2)] − 2λB̃(2)χx + [w(1), B̃(2)](χx + λχ) − sχ = 0,

s = [B̃(2), w(2)] + 2B̃(2)w(1)
x + [B̃(2), w(1)]w(1).

(47)

χt2 − β(2λχx + χxx + 2χwx) = 0,

χt3 + 3λχxx + 3λ2χx + χxxx + 3λχwx +
3

2
χ

(
wt2

β
+ wxx

)
= 0.

(48)

It is now easy to verify that the coefficients of the λ large expansion of the eigenfunction
χ satisfy the infinite chains (16)–(18):

χ(λ; �x) = I −
∑
n�1

w(n)(�x)

λi
. (49)

Therefore we have obtained the spectral interpretation of such chains. In addition, since
the infinite chains (16)–(18) for w(n)’s are equivalent, via the Frobenius structure (13), to
C-integrable systems, we have also shown how to go backward, from S- to C-integrability.

9
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2.5. Construction of solutions and Sato theory

In order to construct solutions of the S-integrable PDEs generated in section 2.2 from the
elementary solution scheme (11), (12) of the matrix Bürgers hierarchy, we consider the
matrices w and � to be finite matrices consisting of n0 ×n0 blocks (this can be done assuming
that �(1(n0+1)) = 0), where n0 is an arbitrary positive integer greater than the number of
blocks w(j)’s involved in the S-integrable PDE under consideration. Taking into account the
structures of w and � given by equations (13) and (14) respectively, we have that

w =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

w(1) w(2) · · · · · · w(n0)

IM 0M · · · · · · 0M

0M

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...

...
. . . 0M IM 0M

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

� =

⎡
⎢⎢⎢⎣

�(11) �(12) · · · �(1n0)

∂−1
x �(11) ∂−1

x �(12) · · · ∂−1
x �(1n0)

...
...

...
...

∂−n0+1
x �(11) ∂−n0+1

x �(12) · · · ∂−n0+1
x �(1n0)

⎤
⎥⎥⎥⎦ .

(50)

We remark that the n0 blocks �(1j), j = 1, . . . , n0 of � are defined, via (11), by equations

�(1j)(�x) =
∫

eIkx+
∑

i,m�1 B̃(im)timki

�̂(1j)(k) d�(k), j = 1, . . . , n0 (51)

in terms of the arbitrary spectral functions �̂(1j), while the remaining blocks are constructed
through the equations �(ij) = ∂i−1

x �(1j). Then, via (12), the components of the M ×M blocks
w(i) are expressed in terms of � through the compact formula

w
(i)
αβ = (�x�

−1)α(iM−M+β), α, β = 1, . . . ,M, i = 1, . . . , n0. (52)

This formula is intimately connected to those obtained via Sato theory. To see it, we
consider the simplest case of scalar blocks (M = 1), containing the example of the KP
equation. Then equation (52) becomes

w(i) = �(i)

� , (53)

where

� =

∣∣∣∣∣∣∣∣∣∣

∂n0−1
x f (1) ∂n0−1

x f (2) · · · ∂n0−1
x f (n0)

∂n0−2
x f (1) ∂n0−2

x f (2) · · · ∂n0−2
x f (n0)

...
...

...
...

f (1) f (2) · · · f (n0)

∣∣∣∣∣∣∣∣∣∣
, (54)

�(i) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂n0−1
x f (1) ∂n0−1

x f (2) · · · · · · · · · · · · ∂n0−1
x f (n0)

...
...

...
...

...
...

...

∂n0−i
x f (1) ∂n0−i

x f (2) · · · · · · · · · · · · ∂n0−i
x f (n0)

∂n0
x f (1) ∂n0

x f (2) · · · · · · · · · · · · ∂n0
x f (n0)

∂n0−i−2
x f (1) ∂n0−i−2

x f (2) · · · · · · · · · · · · ∂n0−i−2
x f (n0)

...
...

...
...

...
...

...

f (1) f (2) · · · · · · · · · · · · f (n0)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (55)

10
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where f (j) = ∂−(n0−1)
x �(1j), j = 1, . . . , n0, equivalent to the formula obtained using Sato

theory [41].

3. Relation between Ch- and S-integrability

Following the same strategy illustrated in section 2, in this section we establish the deep
relations between the matrix PDE (1), recently introduced in [2] and integrated there by the
method of characteristics, and (i) (1+1)-dimensional S-integrable soliton equations such as
the KdV and NLS equations; (ii) the GL(M, C) SDYM equation and its multidimensional
generalizations; (iii) the multidimensional Calogero systems [42–46]. In this section, matrix
w must be diagonalizable.

3.1. Matrix equations integrable by the method of characteristics

Consider the following matrix eigenvalue problem

w(�x)�(; �x) = �(; �x)(�x), (56)

for the matrix w(�x), where (�x) is the diagonal matrix of eigenvalues, �(; �x) is a suitably
normalized matrix of eigenvectors, and associate with it the following flows for �(; �x):

�tmk
+

N∑
j=1

�xjk
ρ(mjk)() − B(mk)�σ (mk)() = 0, m ∈ N+, k = 1, 2, (57)

where B(mk) are constant commuting matrices as in section 2 and �x is the vector of all
independent variables: �x = (xjk, tnm, j, n,m ∈ N+, k = 1, 2). The compatibility between
flows (57) implies the following commuting quasilinear PDEs for the eigenvalues:

tmk
+

N∑
j=1

xjk
ρ(mjk)() = 0, m ∈ N+, k = 1, 2; (58)

the additional compatibility with the eigenvalue problem (56) implies the following nonlinear
PDEs:

wtmk
+

N∑
i=1

wxik
ρ(mik)(w) + [w,B(mk)]σ (mk)(w) = 0, m ∈ N+, k = 1, 2, (59)

commuting replicas of equation (1).
The way of solving equations (59) is as follows [2]. Consider the general solution of

equations (58) with k = 1, 2, characterized by the following non-differential equations:

 = E

⎛
⎝x11I −

∑
m�1

ρ(m11)()tm1, . . . , xN1I −
∑
m�1

ρ(mN1)()tm1;

x12I −
∑
m�1

ρ(m12)()tm2, . . . , xN2I −
∑
m�1

ρ(mN2)()tm2

⎞
⎠ , (60)

where E is an arbitrary diagonal matrix function of 2N arguments; then the general solution
of the linear matrix PDEs (57) for �, with the convenient parametrization �ii = 1, is

11
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given by

�αβ = Fαβ

⎛
⎝x11 −

∑
m�1

ρ(m11)(β)tm1, . . . , xN1 −
∑
m�1

ρ(mN1)(β)tm1;

x12I −
∑
m�1

ρ(m12)(β)tm2, . . . , xN2 −
∑
m�1

ρ(mN2)(β)tm2

⎞
⎠

× e
∑2

k=1

∑
m�1 B(mk)

α σ (mk)(β)tmk , α, β = 1, 2, . . . (61)

where Fαβ are arbitrary scalar functions of 2N arguments, with Fαα = 1. Then

w = ��−1 (62)

solves the nonlinear PDEs (59).
Now we proceed as in section 2, assuming for w the same block Frobenius matrix

structure (13), consistent with equations (56) and (57) (and then with the hierarchies (59)) iff
the matrices B(mk) are given as in (15), the diagonal matrix of eigenvalues (�x) has the block
structure

(�x) = diag[(1)(�x),(2)(�x), . . .], (63)

and

� =

⎡
⎢⎢⎢⎢⎢⎢⎣

�(11) �(22)(2) �(33)(3)2 · · ·
�(11)((1))−1 �(22) �(33)(3) · · ·
�(11)((1))−2 �(22)((2))−1 �(33) · · ·
�(11)((1))−3 �(22)((2))−2 �(33)((3))−1 · · ·

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

. (64)

Using the same strategy as in section 2, we show that

(1) if ρ(mjk) = 0, k = 1, 2, implying  = const, equations (59) generate classical (1+1)-
dimensional S-integrable PDEs such as the N-wave, NLS, KdV and mKdV equations;

(2) if B(mk) = 0 (or σ (mk) = 0), k = 1, 2, equations (59) generate the GL(M, C) SDYM
equation and its (2N + 2)-dimensional generalization;

(3) if B(m1) = 0 (or σ (m1) = 0) and ρ(mi2) = 0, equations (59) generate Calogero systems.

3.2. Derivation of (1+1)-dimensional S-integrable PDEs

Let ρ(mjk) = 0 in (57)–(59), implying  = const (isospectral flows), and let σ (mk)() = m,
i.e.:

w� = �, (65)

�tmk
− B(mk)�m = 0, m, k ∈ N+. (66)

The compatibility conditions for system (65), (66) yield, for m ∈ N+:

wtmk
+ [w,B(mk)]wm = 0. (67)

We remark that these equations are equivalent to equations (6) with ∂
j
x w = 0,∀j .

Consequently, the discrete chains generated by equation (67), with m = 1, k = 1, 2 and
m = 2, 3, k = 1, are given by equations (16)–(18) with ∂

j
x w = 0,∀j :

12
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w
(n)
t1k

+ [w(n+1), B̃(1k)] + [w(1), B̃(1k)]w(n) = 0, k = 1, 2, (68)

w
(n)
t2 + [w(1), B̃(2)](w(1)w(n) + w(n+1)) + [w(2), B̃(2)]w(n) + [w(n+2), B̃(2)] = 0, (69)

w
(n)
t3 + [w(1), B̃(3)](w(1)(w(1)w(n) + w(n+1)) + w(2)w(n) + w(n+2))

+ [w(2), B̃(3)](w(1)w(n) + w(n+1)) + [w(3), B̃(3)]w(n) + [w(n+3), B̃(3)] = 0, (70)

for n ∈ N+, where, in equations (69), (70), we have used the simplifying notation (21).

(1+1)-dimensional N-wave equation. Setting n = 1 into equations (68), and eliminating w(2),
one obtains the well-known S-integrable N-wave system in (1+1) dimensions:[

w
(1)
t11

, B̃(12)
] − [

w
(1)
t12

, B̃(11)
]

+ [[w(1), B̃(11)], [w(1), B̃(12)]] = 0. (71)

NLS. Equation (68) with k = 1, n = 1, 2 and equation (69) with n = 1 are a complete system
of PDEs for w(j), j = 1, 2, 3:

w
(1)
t1 + [w(2), B̃(1)] + [w(1), B̃(1)]w(1) = 0,

w
(2)
t1 + [w(3), B̃(1)] + [w(1), B̃(1)]w(2) = 0,

w
(1)
t2 + [w(1), B̃(2)](w(1)w(1) + w(2)) + [w(2), B̃(2)]w(1) + [w(3), B̃(2)] = 0.

(72)

In the case B̃(2) = αB̃(1) (α is a scalar constant) this system results in the following equation
for w(1): [

w
(1)
t2 , B̃(1)

]
+ w

(1)
t1t1 − α

[
w

(1)
t1 w(1), B̃(1)

]
+ α([w(1), B̃(1)]w(1))t1 = 0. (73)

If, in addition,

M = 2, B̃(1) = diag(1,−1), (74)

this equation yields the celebrated NLS system:
1

α
qt2 − 1

2
qτ1τ1 − 4rq2 = 0,

1

α
rt2 +

1

2
rτ1τ1 + 4qr2 = 0

(75)

for the off-diagonal elements of w(1): q = w
(1)
12 , r = w

(1)
21 . The NLS equation iqt2 +

1
2qτ1τ1 + 4q2q̄ = 0 corresponds to the reduction r = q̄, α = i.

KdV and mKdV. Equation (68) with k = 1, n = 1, 2, 3, and equation (70) with n = 1 yield a
complete system of PDEs for w(j), j = 1, 2, 3, 4:

w
(1)
t1 + [w(2), B̃(1)] + [w(1), B̃(1)]w(1) = 0,

w
(2)
t1 + [w(3), B̃(1)] + [w(1), B̃(1)]w(2) = 0,

w
(3)
t1 + [w(4), B̃(1)] + [w(1), B̃(1)]w(3) = 0, (76)

w
(1)
t3 + [w(1), B̃(3)](w(1)(w(1)w(1) + w(2)) + w(2)w(1) + w(3))

+ [w(2), B̃(3)](w(1)w(1) + w(2)) + [w(3), B̃(3)]w(1) + [w(4), B̃(3)] = 0.

In the case B̃(3) = −B̃(1), this system reduces to the two-coupled matrix equations

w
(1)
t1 + [w(2), B̃(1)] + [w(1), B̃(1)]w(1) = 0,

−[
B̃(1), w

(1)
t1

] = w
(2)
t1t1 +

[
B̃(1), w

(1)
t1 (w(1)w(1) + w(2)) + w

(2)
t1 w(1)

] − ([B̃(1), w(1)]w(2))t1 .
(77)

If, in addition, choice (74) is made, system (77) becomes the mKdV system:

qt3 + 1
4qt1t1t1 + 6qt1qr = 0,

rt3 + 1
4 rt1t1t1 + 6rt1rq = 0,

(78)

13
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where q = w
(1)
12 , r = w

(1)
21 , reducing to the KdV equation qt3 + 1

4qt1t1t1 + 6qqt1 = 0 and to the
mKdV equation qt3 + 1

4qt1t1t1 + 6q2qt1 = 0 if r = 1 and r = q respectively.

3.2.1. Lax pairs for S-integrable PDEs in (1+1) dimensions. As in section 2, in order to
derive the Lax pairs for the above S-integrable PDEs in (1+1) dimensions, it is convenient to
write system (65), (66) in the equivalent form

w� = �, (79)

�tmk
− B(mk)wm� = 0, m ∈ N+, (80)

and consider the dual system

�̃w = �̃, (81)

�̃tmk
+ �̃B(mk)w(m) = 0, m ∈ N+. (82)

Taking into account the block structure of the matrix w given by equation (13) and considering
the first rows of equations (81), (82), we obtain the following spectral chains, for n ∈ N+:

�̃(1n)E = �̃(11)w(n) + �̃(1(n+1)), (83)

�̃
(1n)
t1k

+ �̃(11)B̃(1k)w(n) + �̃(1(n+1))B̃(1k) = 0, (84)

�̃
(1n)
t2k

+ �̃(11)B̃(2k)(w(1)w(n) + w(n+1)) + �̃(12)B̃(2k)w(n) + �̃(1(n+2))B̃(2k) = 0, (85)

�̃
(1n)
t3k

+ �̃(11)B̃(3k)(w(1)(w(1)w(n) + w(n+1)) + w(2)w(n) + w(n+2))

+ �̃(12)B̃(3k)(w(1)w(n) + w(n+1)) + �̃(13)B̃(3k)w(n) + �̃(1(n+3))B̃(3k) = 0 (86)

where E = (1). Setting n = 1 into equations (83), (84) and eliminating �̃(12), one gets the
dual of the Lax pair for the (1+1)-dimensional N-wave equation (71) (ψ̃ = �̃(11)):

ψ̃ t1k
+ Eψ̃B̃(1k) + ψ̃[B̃(1k), w(1)] = 0, k = 1, 2. (87)

Equation (87) with k = 1, written in terms of (21), is the first equation of the dual Lax pair
also for equations (72) and (76).

Setting k = n = 1 into equation (85) and eliminating �̃(12), �̃(13) using equation (83),
one gets the second equation of the dual Lax pair for (72):

ψ̃ t2 + E2ψ̃B̃(2) + Eψ̃[B̃(2), w(1)] + ψ̃s = 0,

s = [B̃(2), w(2)] + [B̃(2), w(1)]w(1).
(88)

The second equation of the dual Lax pair for equation (76) results from equation (86),
k = n = 1 after eliminating �̃(1j), j = 2, 3, 4 using equation (83). In view of conditions (74)
the complete dual spectral system reads:

ψ̃ t1 + Eψ̃

[
1 0
0 −1

]
+ ψ̃

[
0 2q

−2r 0

]
= 0,

ψ̃ t3 − E3ψ̃

[
1 0
0 −1

]
− E2ψ̃

[
0 2q

−2r 0

]

+ Eψ̃

[−2qr −qτ1

−rτ1 2qr

]
− ψ̃

[
rqτ1 − qrτ1

1
2qτ1τ1 + 4q2r

− 1
2 rτ1τ1 − 4r2q qrτ1 − rqτ1

]
= 0.

(89)
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The duals of equations (87)–(89) read:

ψt1k
− B̃(1k)ψE − [B̃(1k), w(1)]ψ = 0, k = 1, 2, (90)

ψt2 − B̃(2)ψE2 − [B̃(2), w(1)]ψE − sψ = 0, (91)

ψt1 +

[
1 0
0 −1

]
ψE −

[
0 2q

−2r 0

]
ψ = 0,

ψt3 −
[

1 0
0 −1

]
ψE3 +

[
0 2q

−2r 0

]
ψE2

+

[−2qr −qτ1

−rτ1 2qr

]
ψE +

[
rqτ1 − qrτ1

1
2qτ1τ1 + 4q2r

− 1
2 rτ1τ1 − 4r2q qrτ1 − rqτ1

]
ψ = 0.

(92)

Equations (90) are the Lax pair of the N-wave equation (71), equation (90) with k = 1 and
equation (91) are the Lax pair of equation (73), reducing to the NLS system if (74) holds, and
equations (92) are Lax pair of system (78) reducing to either KdV or mKdV.

3.2.2. From the Lax pairs of (1+1)-dimensional S-integrable PDEs to the Ch-integrable
equations (67). We show that equations (67) may be derived from the spectral problems
obtained in section 3.2.1. Let

ψ(; x) = χ(; x) e
∑

i,k�1(−1)i B̃(ik)tik
i

. (93)

Then equations (90)–(92) yield:

χt1k
+ [B̃(1k), χ ] − [B̃(1k), w(1)]χ = 0, k = 1, 2, (94)

χt2 − 2[B̃(2), χ ] − [w(1), B̃(2)]χ − sχ = 0,

s = [B̃(2), w(2)] + [B̃(2), w(1)]w(1).
(95)

χt1 +

[[
1 0
0 −1

]
, χ

]
 −

[
0 2q

−2r 0

]
χ = 0, (96)

χt3 −
[[

1 0
0 −1

]
, χ

]
3 +

[
0 2q

−2r 0

]
χ2

+

[−2qr −qτ1

−rτ1 2qr

]
χ +

[
rqτ1 − qrτ1

1
2qτ1τ1 + 4q2r

− 1
2 rτ1τ1 − 4r2q qrτ1 − rqτ1

]
χ. (97)

It is now easy to verify, as in section 2, that the coefficients of the  large expansion of the
eigenfunction χ satisfy the infinite chains (68)–(70):

χ(; y) → I −
∑
j�1

(−1)jw(j)−j , (98)

clarifying their spectral meaning. In addition, recompiling such coefficients into the block
Frobenius matrix, we reconstruct the matrix equations (67) from the Lax pairs of (1+1)-
dimensional S-integrable PDEs.
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3.3. Derivation of the SDYM equation and of its multi-dimensional generalizations

Now we take, in equations (56), (57), B(nk) = 0 (or σ (kj) = 0), m = 1, ρ(1jk)() = j,

t11 = t, t12 = τ, xj1 = xj , xj2 = yj , obtaining the system

w� = �,

�t +
N∑

j=1

�xj
j = 0,

�τ +
N∑

j=1

�yj
j = 0,

(99)

whose compatibility condition yields

wt +
N∑

j=1

wxj
wj = 0, wτ +

N∑
j=1

wyj
wj = 0. (100)

We proceed as in the previous sections but, before considering the derivation in the general
case, quite complicated, we illustrate the simplest two examples.

3.3.1. N = 1: the GL(M, C) SDYM equation. The compatibility condition of the system
(99) yields

wt + wx1w = 0, wτ + wy1w = 0. (101)

Let w and � be given by equations (13) and (64) respectively. The first rows of the matrix
equations (101) generate the chains, for n ∈ N+ [37]:

w
(n)
t + w(1)

x1
w(n) + w(n+1)

x1
= 0, (102a)

w(n)
τ + w(1)

y1
w(n) + w(n+1)

y1
= 0. (102b)

Setting n = 1 and eliminating w(2), we derive the well-known GL(M, C) SDYM equation:

w
(1)
ty1

− w(1)
τx1

+
[
w(1)

x1
, w(1)

y1

] = 0. (103)

To derive the Lax pair of (103), we first write the dual of system (99) in the convenient
form:

�̃w = �̃, (104a)

�̃t + �̃x1w = 0, �̃τ + �̃y1w = 0. (104b)

Using again (13) and (64), the first rows of equations (104) appear in the form:

�̃(11)w(n) + �̃(1(n+1)) = E�̃(1n),

�̃
(1n)
t + �̃(11)

x1
w(n) + �̃(1(n+1))

x1
= 0,

�̃(1n)
τ + �̃(11)

y1
w(n) + �̃(1(n+1))

y1
= 0,

(105)

where E = (1). Setting n = 1 into equations (105) and eliminating �̃(12), one obtains the
dual of the Lax pair of (103) for the spectral function ψ̃ = �̃(11):

ψ̃ t + (Eψ̃)x1 = ψ̃w(1)
x1

, (106a)
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ψ̃τ + (Eψ̃)y1 = ψ̃w(1)
y1

. (106b)

Then the Lax pair of (103) reads:

ψt + ψx1E + w(1)
x1

ψ = 0, (107a)

ψτ + ψy1E + w(1)
y1

ψ = 0. (107b)

Vice versa, it is easy to verify that the coefficients of the E large expansion of the
eigenfunction ψ in (107) are the elements of chain (102):

ψ(E; �x) → I −
∑
j�1

w(j)E−j , (108)

obtaining the spectral meaning of such chains. As a consequence, one reconstructs
equations (101) from the Lax pair (107) of the SDYM equation.

3.3.2. N = 2: a generalization of the SDYM equation in six dimensions. The compatibility
condition of system (99) yields now

wt + wx1w + wx2w
2 = 0, wτ + wy1w + wy2w

2 = 0. (109)

The corresponding chains read:

w
(n)
t + w(1)

x1
w(n) + w(n+1)

x1
+ w(1)

x2
(w(1)w(n) + w(n+1)) + w(2)

x2
w(n) + w(n+2)

x2
= 0,

w(n)
τ + w(1)

y1
w(n) + w(n+1)

y1
+ w(1)

y2
(w(1)w(n) + w(n+1)) + w(2)

y2
w(n) + w(n+2)

y2
= 0.

(110)

Setting n = 1 and n = 2 into (110) and eliminating the fields w(3), w(4), one obtains the
following integrable system of two nonlinear PDEs in six dimensions for the fields w(1), w(2):

w(1)
x2τ

− w
(1)
y2t + w(2)

x2y1
− w(2)

x1y2
+ w(1)

x2y1
w(1) − w(1)

x1y2
w(1) + w(1)

y1
w(1)

x2
− w(1)

x1
w(1)

y2
+

[
w(2)

y2
, w(1)

x2

]
+

[
w(1)

y2
, w(2)

x2

]
+ w(1)

y2

(
w(1)2)

x2
− w(1)

x2

(
w(1)2)

y2
= 0,

w(1)
x1τ

− w
(1)
y1t +

[
w(1)

y1
, w(1)

x1

]
+ w(2)

x2τ
− w

(2)
y2t +

[
w(2)

y2
, w(1)

x1

]
+

[
w(1)

y1
, w(2)

x2

]
+

[
w(1)

x2
, w(1)

y2

]
w(1)2

+
(
w(1)

x1y2
w(1) − w(1)

x2y1
w(1) + w(2)

x1y2
− w(2)

x2y1

)
w(1)

+ w(1)
x2

(
w(1)

τ − w(1)w(1)
y1

+
[
w(2)

y2
, w(1)

])
−w(1)

y2

(
w

(1)
t − w(1)w(1)

x1
+

[
w(2)

x2
, w(1)

])
+

[
w(2)

y2
, w(2)

x2

] = 0, (111)

reducing to (103) for w(1) if the fields do not depend on x2, y2.
To derive the Lax pair of (111), we consider again the dual of system (99):

�̃w = �̃,
(112)

�̃t + �̃x1w + �̃x2w
2 = 0, �̃τ + �̃y1w + �̃y2w

2 = 0.

Using (13) and (64), the first rows of equations (112) appear in the form:

�̃(11)w(n) + �̃(1(n+1)) = E�̃(1n), (113)

�̃
(1n)
t + �̃(11)

x1
w(n) + �̃(1(n+1))

x1
+ �̃(11)

x2
(w(1)w(n) + w(n+1)) + �̃(12)

x2
w(n) + �̃(1(n+2))

x2
= 0, (114)

�̃(1n)
τ + �̃(11)

y1
w(n) + �̃(1(n+1))

y1
+ �̃(11)

y2
(w(1)w(n) + w(n+1)) + �̃(12)

y2
w(n) + �̃(1(n+2))

y2
= 0. (115)
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Setting n = 1 into equations (114), (115), and eliminating �̃(12), �̃(13) using equations (113)
for n = 1, 2, one obtains the dual of the Lax pair of (111) for the spectral function ψ̃ = �̃(11):

ψ̃t +
2∑

j=1

(Ej ψ̃)xj
= ψ̃

(
w(1)

x1
+ w(2)

x2
+ w(1)

x2
w(1)

)
+ Eψ̃w(1)

x2
,

ψ̃t +
2∑

j=1

(Ej ψ̃)yj
= ψ̃

(
w(1)

y1
+ w(2)

y2
+ w(1)

y2
w(1)

)
+ Eψ̃w(1)

y2
.

(116)

Then the Lax pair of (111) reads:

ψt + ψx1E + ψx2E2 +
(
w(2)

x2
+ w(1)

x2
w(1) + w(1)

x1

)
ψ + w(1)

x2
ψE = 0,

ψτ + ψy1E + ψy2E2 +
(
w(2)

y2
+ w(1)

y2
w(1) + w(1)

y1

)
ψ + w(1)

y2
ψE = 0.

(117)

As before, it is easy to verify that equation (108) holds, namely that the coefficients of the
E large expansion of ψ in (117) are the elements of chain (110). Therefore one reconstructs
equations (109) from the Lax pair (111) of the six-dimensional generalization (111) of the
SDYM equation.

3.3.3. Multidimensional generalization of the SDYM equation. Motivated by the above
formulae for the simplest cases N = 1, 2, here we discuss the general N situation. If w is the
block Frobenius matrix (13), the power wj exhibits the following structure:

wj =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

w̃(j ;11) w̃(j ;12) w̃(j ;13) · · ·
· · · · · · · · · · · ·

w̃(j ;j1) w̃(j ;j2) w̃(j ;j3) · · ·
IM 0M 0M · · ·
0M IM 0M · · ·
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (118)

where the matrix blocks w̃ are defined by the equations

w̃(j ;1n) =
j−1∑
i=1

w(i)w̃(j−i;1n) + w(j+n−1), n, j � 1, (w̃(1;1n) = w(n)), (119)

w̃(j ;kn) = w̃(j−k+1;1n), 2 � k � j, (w̃(j ;jn) = w(n)) (120)

in terms of the basic blocks w(j), j � 1. The first few examples read:

w̃(2;1n) = w(1)w(n) + w(n+1),

w̃(3;1n) = (w(1))2w(n) + w(1)w(n+1) + w(2)w(n) + w(n+2),

w̃(4;1n) = w(1)((w(1))2w(n) + w(1)w(n+1) + w(2)w(n) + w(n+2))

+ w(2)(w(1)w(n) + w(n+1)) + w(3)w(n) + w(n+3). (121)

Furthermore, evaluating the (1n)-block of wj+1, written as (wjw), we obtain the additional
formula

w̃(j−1;1(n+1)) = w̃(j ;1n) − w̃(j−1;11)w(n), j � 1, n > 1, (122)

implying

w̃(j ;1n) = w̃(j+n−1;11) −
n−1∑
l=1

w̃(j+l−1;11)w(n−l), j, n � 1. (123)
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Equation (123) reduces, for j = 1, to the following equation:

w̃(j ;11) =
j−1∑
i=1

w̃(j−i;11)w(i) + w(j), j � 1 (124)

useful later on (compare it with equation (119) for n = 1).
Using equation (13), system (100) generates the discrete chains

w
(n)
t +

N∑
j=1

(
j∑

i=1

w(i)
xj

w̃(j−i+1;1n) + w(j+n)
xj

)
= 0,

w(n)
τ +

N∑
j=1

(
j∑

i=1

w(i)
yj

w̃(j−i+1+;in) + w(j+n)
yj

)
= 0.

(125)

Setting n = 1, . . . , N into equations (125), one obtains a determined system of 2N equations
for the fields w(i), i = 1, . . . , 2N . As in the previous two illustrative examples for N = 1, 2,
it is possible to eliminate the N fields w(i), i = N + 1, . . . , 2N , obtaining a system on N
equations in (2N + 2) dimensions for the remaining fields w(i), i = 1, . . . , N . Such system,
which provides the natural multidimensional generalization of the SDYM equation (103), is
conveniently written as follows:

p(N,0)
τ − q

(N,0)
t + [q(N;0), p(N;0)] = 0,

p(N,n)
τ − q

(N,n)
t +

n∑
j=1

(
p(N,n−j)

yj
− q(N,n−j)

xj

)
+

n∑
j=0

[q(N,j), p(N,n−j)] = 0,

1 � n � N − 1,

(126)

where the fields p(N,j), q(N,j) are suitable combinations of the N fields w(n), n = 1, . . . , N :

p(N,j) =
N∑

s=j+1

(
s−j−1∑

l=1

w(l)
xs

w̃(s−j−l;11) + w(s−j)
xs

)
,

q(N,j) =
N∑

s=j+1

(
s−j−1∑

l=1

w(l)
ys

w̃(s−j−l;11) + w(s−j)
ys

)
;

(127)

the first few read as follows:

p(N,N−1) = w(1)
xN

, q(N,N−1) = w(1)
yN

,

p(N,N−2) = w(1)
xN−1

+ w(2)
xN

+ w(1)
xN

w(1), q(N,N−2) = w(1)
yN−1

+ w(2)
yN

+ w(1)
yN

w(1),

p(N,N−3) = w(1)
xN−2

+ w(2)
xN−1

+ w(3)
xN

+
(
w(1)

xN−1
+ w(2)

xN

)
w(1) + w(1)

xN

(
w(1)2

+ w(2)
)
,

q(N,N−3) = w(1)
yN−2

+ w(2)
yN−1

+ w(3)
yN

+
(
w(1)

yN−1
+ w(2)

yN

)
w(1) + w(1)

yN

(
w(1)2

+ w(2)
)
.

(128)

To show it, it is more convenient to go through the Lax pair derivation.

Lax pair. The system dual of (99) reads

�̃w = �̃,

�̃t +
N∑

j=1

�̃xj
wj = 0, �̃τ +

N∑
j=1

�̃yj
wj = 0. (129)

and it is conveniently rewritten in the equivalent form
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�̃w = �̃, (130)

�̃t +
N∑

j=1

(j �̃)xj
−

N∑
j=1

�̃(wj )xj
= �̃t +

N∑
j=1

(j �̃)xj
−

N−1∑
s=0

s�̃

N∑
j=s+1

wxj
wj−s−1 = 0,

(131)

�̃τ +
N∑

j=1

(j �̃)yj
−

N∑
j=1

�̃(wj )yj
= �̃t +

N∑
j=1

(j �̃)yj
−

N−1∑
s=0

s�̃

N∑
j=s+1

wyj
wj−s−1 = 0.

(132)

As before, the block (1, 1) of the matrix equations (131), (132) leads to the dual of the Lax
pair (E = (1)) of the multidimensional SDYM equations:

ψ̃t +
N∑

j=1

(Ej ψ̃)xj
=

N−1∑
j=0

Ej ψ̃p(N,j), (133)

ψ̃τ +
N∑

j=1

(Ej ψ̃)yj
=

N−1∑
j=0

Ej ψ̃q(N,j), (134)

where p(N,j) and q(N,j) are defined in terms of w(i) and their derivatives in (127).
Then one derives the corresponding Lax pair

ψt +
N∑

j=1

ψxj
Ej +

N−1∑
j=0

p(N,j)ψEj = 0, (135)

ψτ +
N∑

j=1

ψyj
Ej +

N−1∑
j=0

q(N,j)ψEj = 0, (136)

together with its compatibility condition, the following determined system of 2N equations in
(2N + 2) variables for the fields p(N,j), q(N,j), j = 0, . . . , N − 1:

p(N,0)
τ − q

(N,0)
t + [q(N;0), p(N;0)] = 0, (137)

p(N,n)
τ − q

(N,n)
t +

n∑
j=1

(
p(N,n−j)

yj
− q(N,n−j)

xj

)
+

n∑
j=0

[q(N,j), p(N,n−j)] = 0,

1 � n � N − 1, (138)

N∑
j=n−N+1

(
p(N,n−j)

yj
− q(N,n−j)

xj

)
+

N−1∑
j=n−N+1

[q(N,j), p(N,n−j)] = 0, N � n � 2N − 2, (139)

p(N,N−1)
yN

− q(N,N−1)
xN

= 0. (140)

We remark that only the first N equations (137), (138) involve derivatives with respect to
the time variables t, τ ; the remaining N equations (139), (140), providing a set of relations
among the 2N fields p(N,j), q(N,j), are remarkably parametrized by equations (127) in terms
of the N fields w(j), j = 1, . . . , N . Therefore one is left with equations (126), (127).
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We also remark that generalization (137)–(140) of the SDYM equation is known in the
literature [18, 48], to be generated by the Lax pair

ψt +
N∑

j=1

λjψxj
+

N−1∑
j=0

λjp(N,j)ψ = 0, (141)

ψτ +
N∑

j=1

λjψyj
+

N−1∑
j=0

λjq(N,j)ψ = 0, (142)

differing from (135), (136) by the fact that here λ is just a constant and scalar spectral parameter.
Therefore the remarkable derivation of (137)–(140) from the matrix equations (100) and

its integration scheme has allowed one to uncover the following two important properties of
system (137)–(140).

• Half of the equations of system (137)–(140) (the non-evolutionary part) can be
parametrized in terms of the blocks w(j), j = 1, . . . , N of the Frobenius matrix w,
reducing by half of the number of equations.

• Equations (137)–(140) turn out to be associated with the novel Lax pair (135), (136), in
which the diagonal matrix E satisfies, from (58), the integrable quasilinear equations

Et +
N∑

j=1

Exj
Ej = 0, Eτ +

N∑
j=1

Eyj
Ej = 0. (143)

Therefore, as was already observed in [37] in the case of the SDYM equation (103), the
integration scheme associated with such a novel Lax pair makes clear the existence of a
rich solution space exhibiting interesting phenomena of multidimensional wave breaking.
A detailed study of these solutions is postponed to a subsequent paper, together with
the comparison with the finite gap solutions of the SDYM equation constructed in [49],
and associated with a Riemann surface with branch points satisfying equations (143) for
N = 1.

From the Lax pair of the multidimensional SDYM to the integrable chains (125). As for
the particular cases N = 1, 2, in this section we show that the E large limit of the Lax pair
(135), (136) yields expansion (108) for the eigenfunction ψ . Therefore the coefficients of the
E large expansion of the spectral function associated with the S-integrable multidimensional
generalization of the SDYM equations are solutions of the nonlinear chains (125), providing
the spectral meaning to such nonlinear chains. In addition, recompiling the matrices w(j) into
the block Frobenius matrix w, via (13), one establishes a remarkable relation between the Lax
pair of the multidimensional SDYM and the basic matrix equations (100), solvable by the
method of characteristics.

To show the validity of expansion (108), we substitute it into the Lax pair (135), (136),
obtaining the following pairs of equations:

p(N,i) =
N−1∑
j=i+1

(
w(j−i)

xj
+ p(N,j)w(j−i)

)
+ w(N−i)

xN
, 0 � i � N − 1,

q(N,i) =
N−1∑
j=i+1

(
w(j−i)

yj
+ q(N,j)w(j−i)

)
+ w(N−i)

yN
, 0 � i � N − 1,

(144)
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w
(i)
t +

N−1∑
j=1

(
w(j+i)

xj
+ p(N,j)w(j+i)

)
+ w(N+i)

xN
+ p(N;0)w(i) = 0, i � 1,

w(i)
τ +

N−1∑
j=1

(
w(j+i)

yj
+ q(N,j)w(j+i)

)
+ w(N+i)

yN
+ q(N;0)w(i) = 0, i � 1,

(145)

corresponding respectively to the condition that the coefficients of the positive and negative
powers of E are zero in all orders. Equations (144) are identically satisfied using definitions
(127) and (119) of p(N,j), q(N,j) and w̃(j ;11). To show that also equations (145) are identically
satisfied, we compare them with equations (125) and use again (127), (119), to finally derive
the equation

N∑
k=1

k∑
l=1

w(l)
xk

⎛
⎝ k−l∑

j=1

w(j)w̃(k−l−j+1;1n) −
k−l−1∑
j=0

w̃(k−l−j ;11)w(j+n)

⎞
⎠ = 0, n � 1 (146)

identically satisfied, due to (119) and (124).

3.4. Derivation of Calogero systems

In the Lax pair of the S-integrable Calogero systems [42–46], the spectral problem is one-
dimensional (like that of, say, KdV and NLS), while the equation describing the evolution
of the eigenfunction is a multidimensional PDE in which an arbitrary number of additional
independent variables are graded by powers of the spectral parameter; in addition, such spectral
parameter satisfies a quasilinear PDE.

It is therefore clear that Calogero systems combine properties of the S-integrable PDEs
in (1+1) dimensions of section 3.2 with properties of the multidimensional generalizations of
the SDYM equation of section 3.3 and, to generate them from equations (59), we have to start
with the matrix equation (56) and evolutionary system (57) in which ρ(mj1) = σ (m2) = 0:

w� = �, (147)

�tm1 − B(m1)�σ (m1)() = 0, m ∈ N+,

�tm2 +
N∑

j=1

�xj2ρ
(mj2)() = 0.

(148)

Here we illustrate the construction of the simplest example of the Calogero system,
corresponding to N = m = 1 and σ (11)() = ρ(112)() = ,B = B(11), using the notation
B̃ = B̃(11), τ = t11, t = t12, x = x12. Then the compatibility between the two equations (148)
yields the following quasilinear PDEs

t + x = 0, τ = 0 (149)

for the matrix of eigenvalues; the compatibility between equations (147) and (148) yields
instead the following matrix equations for field w:

wτ + [w,B]w = 0, wt + wxw = 0. (150)

Using the Frobenius structure (13) of w, we get the following discrete chains, for n ∈ N+:

w(n)
τ + [w(n+1), B̃] + [w(1), B̃]w(n) = 0,

w
(n)
t + w(1)

x w(n) + w(n+1)
x = 0,

(151)
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coinciding with equations (68) for k = 1, and with (102a). Fixing n = 1 in (151), and
eliminating w(2), one gets the following matrix PDE:[

w
(1)
t , B̃

]
+

[
w(1)

x w(1), B̃
] = w(1)

τx + ([w(1), B̃]w(1))x . (152)

Let M = 2 and B̃ = β diag(1,−1), then equation (152) yields

−βqt − 1
2qxτ − 4β2q∂−1

τ (qr)x = 0,

βrt − 1
2 rxτ − 4β2r∂−1

τ (qr)x = 0.
(153)

If r = q̄, β = i, then the above system becomes the following (2+1)-dimensional integrable
variant of NLS:

iqt + 1
2qxx − 4q∂−1

τ (qq̄)x = 0, (154)

studied in [50, 51].
Using the dual of equations (82) with m = k = 1, and equations (104a), (104b), we

derive the dual Lax pair ((87) for k = 1 and (106a)) for (152):

ψ̃τ + Eψ̃B̃ + ψ̃[B̃, w(1)] = 0, ψ̃ t + (Eψ̃)x = ψ̃w(1)
x (155)

and the corresponding Lax pair ((90) for k = 1 and (107a)):

ψτ − B̃ψE − [B̃, w(1)]ψ = 0, ψt + ψxE + w(1)
x ψ = 0 (156)

for system (152).
We end this section remarking that integrable PDEs associated with Lax pairs with varying

spectral parameter have been studied also elsewhere, see, for instance, [52].

3.5. Construction of solutions

The construction of solutions for the three classes of S-integrable PDEs derived in
sections 3.2, 3.3 and 3.4 from equation (59), is based on the solution of the algebraic
equations (60), (61), taking into account the block-matrix structure (64) of �. Then the
independent blocks �(ii), i = 1, 2, . . . , are characterized by the explicit formula:

�
(ii)
αβ = F

(ii)
αβ

⎛
⎝x11 −

∑
m�1

ρ(m11)
(


(i)
β

)
tm1, . . . , xN1 −

∑
m�1

ρ(mN1)
(


(i)
β

)
tm1;

x12 −
∑
m�1

ρ(m12)
(


(i)
β

)
tm2, . . . , xN2 −

∑
m�1

ρ(mN2)
(


(i)
β

)
tm2

⎞
⎠

× e
∑2

k=1

∑
m�1 B̃(mk)

α σ (mk)(
(i)
β )tmk , α, β = 1, . . . ,M, i = 1, 2, . . . , (157)

where F
(ii)
αβ are arbitrary scalar functions of 2N arguments (such that F (ii)

αα = 1), while the
remaining blocks are given by the equations �(ij) = �(jj)((j))j−i . Once  and � are
constructed in this way, the blocks w(i) are obtained, from equation (62), through the compact
formula:

w
(i)
αβ = (��−1)α(iM−M+β), α, β = 1, . . . ,M. (158)

In the case of the (1+1)-dimensional S-integrable models of section 3.2, corresponding to
ρ(ijk) = 0, is an arbitrary constant diagonal matrix and formula (157) reduces to

�
(ii)
αβ = F

(ii)
αβ e

∑2
k=1

∑
m�1 B̃(mk)

α σ (mk)(
(i)
β )tmk , α, β = 1, . . . ,M, i = 1, 2, . . . , (159)
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where F
(ii)
αβ are constant amplitudes. Then solution (158) is a rational combination of

exponentials. It would be interesting to compare, in this case, the solution space generated by
(158) with that generated by Sato theory.

In the case of the Calogero systems of section 3.4, when ρ(mj1) = σ (m2) = 0, formula
(157) reduces to

�
(ii)
αβ = F

(ii)
αβ

⎛
⎝x12 −

∑
m�1

ρ(m12)
(


(i)
β

)
tm2, . . . , xN2 −

∑
m�1

ρ(mN2)
(


(i)
β

)
tm2

⎞
⎠

× e
∑

m�1 B̃(m1)
α σ (m1)(

(i)
β )tm1 , α, β = 1, . . . , M, i = 1, 2, . . . . (160)

where F
(ii)
αβ are now arbitrary functions of N arguments and  is the implicit solution of the

nondifferential equation

 = E

⎛
⎝x12I −

∑
m�1

ρ(m12)()tm2, . . . , xN2I −
∑
m�1

ρ(mN2)()tm2

⎞
⎠ , (161)

following from equation (60), where E is the arbitrary diagonal matrix function of N arguments.

4. Generalizations

The block Frobenius matrix (13) is not the only possible structure of w allowing one to
generate new types of integrable nonlinear PDEs, starting with C-integrable and Ch-integrable
equations (6) and (59). A more general representation is given by the following block matrix:

w =

⎡
⎢⎣

W(11) W (12) · · ·
W(21) W (22) · · ·

...
...

. . .

⎤
⎥⎦ , (162)

where each block W(ij) has one of the following two block matrix forms:

Wij = S(ij) =

⎡
⎢⎢⎢⎣

w(ij ;1) w(ij ;2) w(ij ;3) · · ·
IM 0M 0M · · ·
0M IM 0M · · ·
...

...
...

. . .

⎤
⎥⎥⎥⎦ ,

W ij = C(ij) =

⎡
⎢⎢⎢⎣

w(ij ;1) w(ij ;2) w(ij ;3) · · ·
0M IM 0M · · ·
0M 0M IM · · ·
...

...
...

. . .

⎤
⎥⎥⎥⎦ ,

(163)

and the blocks w(ij ;k) are M × M matrices.
To provide consistency of this structure with the Lax pairs (4), (5) or (56), (57), we

must take appropriate structure of matrices B(nm) and �. Consider the simplest example of
equations (4), (5) with n = 1. In this case w satisfies the N-wave equations (8). Let

w =
[
S(11) C(12)

C(21) C(22)

]
. (164)

Then B(1m) must be taken in the form

B(1m) = diag(B̂(m1), B̂(m2)), B̂(mj) = diag(B̃(mj), B̃(mj), . . .), j = 1, 2, (165)
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where B̃(mj) are diagonal matrices, and � must have the following block structure:

� =
[
�(11) �(12)

�(21) �(22)

]
, (166)

where �(ij) must satisfy the following system of linear PDEs (consequence of equation (4)),
for i � 2:

�(11;ij)
x = �(11;(i−1)j) + �(21;ij), (167)

�(12;ij)
x = �(12;(i−1)j) + �(22;ij), (168)

�(21;ij)
x = �(11;ij) + �(21;ij), (169)

�(22;ij)
x = �(12;ij) + �(22;ij). (170)

In view of (164), equation (8) reads (ti = t1i ):

S
(11)
ti − B̂(i1)S(11)

x + [S(11), B̂(i1)]S(11) + (C(12)B̂(i2) − B̂(i1)C(12))C(21) = 0,

C
(12)
ti − B̂(i1)C(12)

x + [S(11), B̂(i1)]C(12) + (C(12)B̂(i2) − B̂(i1)C(12))C(22) = 0,

C
(21)
ti − B̂(i2)C(21)

x + (C(21)B̂(i1) − B̂(i2)C(21))S(11) + [C(22), B̂(i2)]C(21) = 0,

C
(22)
ti − B̂(i2)C(22)

x + (C(21)B̂(i1) − B̂(i2)C(21))C(12) + [C(22), B̂(i2)]C(22) = 0,

(171)

where i = 1, 2. Writing block (11) of each of these equations, one obtains

w
(11;1)
ti − B̃(i1)w(11;1)

x + [w(11;1), B̃(i1)]w(11;1) + [w(11;2), B̃(i1)]

+ (w(12;1)B̃(i2) − B̃(i1)w(12;1))w(21;1) = 0, (172a)

w
(12;1)
ti − B̃(i1)w(12;1)

x + [w(11;1), B̃(i1)]w(12;1) + (w(12;1)B̃(i2) − B̃(i1)w(12;1))w(22;1) = 0,

(172b)

w
(21;1)
ti − B̃(i2)w(21;1)

x + (w(21;1)B̃(i1) − B̃(i2)w(21;1))w(11;1)

+ (w(21;2)B̃(i1) − B̃(i2)w(21;2)) + [w(22;1), B̃(i2)]w(21;1) = 0, (172c)

w
(22;1)
ti − B̃(i2)w(22;1)

x + (w(21;1)B̃(i1) − B̃(i2)w(21;1))w(12;1) + [w(22;1), B̃(i2)]w(22;1) = 0.

(172d)

Eliminating w(11;2) and w(21;2) from equations (172a), (172c) with i = 1, 2 and taking
equations (172b), (172d) with i = 2, one obtains the following (2+1)-dimensional evolutionary
system of PDEs in the time variable t2:

[E (1), B̃(21)] − [E (2), B̃(11)] = 0, (173)

qt2 − B̃(21)qx + [v, B̃(21)]q + (qB̃(22) − B̃(21)q)u = 0, (174)

E(1)B̃(21) − B̃(22)E(1) − E(2)B̃(11) + B̃(12)E(2) = 0, (175)

ut2 − B̃(22)ux + (wB̃(21) − B̃(22)w)q + [u, B̃(22)]u = 0, (176)

where
E (i) = vti − B̃(i1)vx + [v, B̃(i1)]v + (qB̃(i2) − B̃(i1)q)w, i = 1, 2,

E(i) = wti − B̃(i2)wx + (wB̃(i1) − B̃(i2)w)v + [u, B̃(i2)]w, i = 1, 2,
(177)
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and

v = w(11;1), q = w(12;1), w = w(21;1), u = w(22;1), (178)

supplemented by equations (172b), (172d) with i = 1:

qt1 − B̃(11)qx + [v, B̃(11)]q + (qB̃(12) − B̃(11)q)u = 0, (179)

ut1 − B̃(12)ux + (wB̃(11) − B̃(12)w)q + [u, B̃(12)]u = 0, (180)

that can be considered as compatible constraints for the evolutionary system (173)–(176).
The Lax pair, as well as the solution space for this system, can be obtained following the

procedures described in sections 2.3 and 2.5.
If w = q = u = 0, one obtains the S-integrable (2+1)-dimensional N-wave

equation (173) for v (see equation (20)). Instead, if v = w = q = 0, one obtains the
C-integrable (1+1)-dimensional N-wave-type equation (176) or (180) for u (see equation (8)).
Therefore equations (173)–(176) and (179), (180) can be viewed as nonlinear PDEs sharing
properties of S- and C-integrable systems. One can show that this property is shared by all the
PDEs generated by reductions of the type (162), (163), recovering, in particular, the (n+1)-
dimensional (n > 2) nonlinear PDEs constructed in [34] by a generalization of the dressing
method.

5. Summary and future perspectives

We have established deep and remarkable connections among PDEs integrable by the inverse
spectral transform method, the method of characteristics and the Hopf–Cole transformation.
These relations can be used effectively to construct, for the generated S-integrable PDEs, the
associated compatible systems of linear operators, their commuting flows and large classes of
solutions. These results open several research perspectives.

(1) Use of the above derivation of the S-integrable systems to investigate the corresponding
space of analytic solutions generated from the seed solutions of the original C- and
Ch-integrable PDEs. In particular,

(a) the connections between such solution space and that generated by Sato theory. In
the KP case, the two solution spaces coincide; in other cases the connection is, at the
moment, less clear.

(b) The use of the quasilinear PDEs for the eigenvalues to study in detail the wave
breaking phenomena associated with solutions of the SDYM equation and of its
multidimensional generalizations.

(2) Search for the integrable systems that should generate, through a suitable matrix reduction,
the integrable PDEs equivalent to the commutation of vector fields, like equation (3), a
class of S-integrable systems not fitting yet into the general picture illustrated in this paper.

(3) Generalization of the techniques presented in this paper to generate novel integrable
systems, possibly in multidimensions. In particular, a systematic use of group theory
tools to explore reductions different from the block Frobenius matrix one.

(4) Construction of the discrete analogue of the results of this paper. In this respect, we remark
that, while the discretization of the results of section 2 does not present, in principle, any
conceptual problem, and will be the subject of a subsequent paper, the discretization of
the results of section 3, if ρ(ijk) �= 0, is not clear, since a satisfactory discretization of the
method of characteristics and of equation (1) for ρ(i) �= 0, in the scalar and matrix cases,
are, at the moment, unknown.
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